GBG scunile

17EC35
USN

Third Semester B.E. Degree Examination, July/August 2021 Network Analysis

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Using source transformation techniques, find ' v ' for the circuit in Fig.Q1(a).

Fig.Q1(a)
(07 Marks)
b. Obtain equivalent resistance R_{ab} for the circuit in Fig.Q1(b) and hence find ' i '.

Fig.Q1(b)
(07 Marks)
c. Explain ideal and practical current sources.
(06 Marks)
2 a. Determine the current I_{0} in the circuit of Fig.Q2(a) using Mesh analysis.

Fig.Q2(a)
b. Use nodal analysis to find v_{0} in the network of Fig.Q2(b).

Fig.Q2(b)
(08 Marks)
c. Explain the concept of super node with an illustration.
(04 Marks)
3 a. State and prove Reciprocity theorem.
(06 Marks)
b. Use superposition theorem to find i_{0} in the circuit shown in Fig.Q3(b).

Fig.Q3(b)
(06 Marks)
c. Find Thevenin's equivalent circuit across the terminals $\mathrm{a}-\mathrm{b}$ for the circuit shown in Fig.Q3(c).
(08 Marks)

Fig.Q3(c)
a. State and prove maximum power transfer theorem for the case of AC source, hence show that $\rho_{\max }=\frac{\left|\mathrm{V}_{\mathrm{TH}}\right|^{2}}{8 \mathrm{R}_{\mathrm{L}}}$
b. Find the current through 16Ω resistor using Norton's theorem in Fig.Q4(b).

Fig.Q4(b)
(08 Marks)
c. Find the current through $(10-3 \mathrm{j}) \Omega$ using Millman's theorem in Fig.Q4(c).

Fig.Q4(c)
5 a. The switch K ' is changed from position 1 to position 2 at $\mathrm{t}=0$. Steady state condition having been reached at position 1. Find the values of $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{{d t^{2}}^{2}}$ at $t=0^{+}$. [Refer Fig.Q5(a)]
(06 Marks)

Fig.Q5(a)
b. In the network shown in Fig.Q5(b), $\mathrm{V}_{1}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}}$ for $\mathrm{t} \geq 0$ and is zero for all $\mathrm{t}<0$. If the capacitor is initially uncharged. Determine the value of $\frac{\mathrm{d}^{2} \mathrm{v}_{2}}{\mathrm{dt}^{2}}$ and $\frac{\mathrm{d}^{3} \mathrm{v}_{2}}{\mathrm{dt}^{3}}$ at $\mathrm{t}=0^{+}$.

Fig.Q5(b)
(08 Marks)
c. Explain initial and final conditions in case of a capacitor.

6 a. For the circuit shown in Fig.Q6(a),
(i) Find the differential equation for $i_{L}(t)$
(ii) Find Laplace transform of $i_{L}(t)$
(iii) Solve for $i_{L}(t)$

Fig.Q6(a)
(08 Marks)
b. For the circuit shown in Fig.Q6(b), (i) Find the differential equation for $i_{L}(t)$, (ii) Find Laplace transform of $i_{c}(t)$, (iii) Solve for $i_{L}(t)$.

Fig.Q6(b)
c. Obtain Laplace transform for a decaying exponential signal.

7 a. Prove that the resonant frequency is the geometric mean of the two half power frequencies ie., Show that $\omega_{0}=\sqrt{\omega_{1} \omega_{2}}$
b. Obtain an expression for quality factor of an capacitor.
c. In a series circuit, $\mathrm{R}=6 \Omega, \omega_{0}=4.1 \times 10^{6} \mathrm{rad} / \mathrm{sec}$, bandwidth $=10^{5} \mathrm{rad} / \mathrm{sec}$. Compute L, C half power frequencies and Q .

8 a. Obtain an expression for the resonant frequency in a parallel resonant circuit.
(08 Marks)
b. Show that a two branch parallel resonant circuit is resonant at all frequencies when

$$
\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{C}}=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}
$$

c. Find the value of R_{L} for which the circuit is at resonance, as shown in Fig.Q8(c).
(05 Marks)

Fig.Q8(c)
9 a. Obtain an expression for h-parameters in terms of Z-parameters.
b. Find Z and Y parameters for the network shown in Fig.Q9(b).

Fig.Q9(b)
(04 Marks)
c. Explain ABCD parameters.
(08 Marks)
10 a. Obtain an expression for Y-parameters in terms of ABCD parameters.
b. Find ABCD parameters for the network shown in Fig.Q10(b).

Fig.Q10(b)
(08 Marks)
c. State reciprocity condition for
(i) Z - parameters
(ii) Y - parameters
(iii) h - parameters
(iv) ABCD - parameters

